Pese a haber leído extensamente sobre el tema (sobre todo su historia), no pude discutirlo con amplitud. A reserva de hallar otras direcciones, las inquietudes que tengo por ahora, que quizá valdría la pena explorar, son:
1- Comprobación más rigurosa (quizá matemática?) de la conveniencia de la "velocidad", en particular quizá alguna prueba de convergencia (pendiente leer más acerca del teorema Essen - Berry mencionado en el libro de Mantengna & Stanley).
2- Verificación de la validez de dicho instrumento en diferentes tiempos, hallar el límite de su aplicabilidad.
3- Me gustaría explorar una visualización diferente de los datos, de manera tal que sea comprensible de forma intuitiva, incluso para los ajenos a la materia.
4- Si pudiera encontrar una conexión social sería genial.
Queda pendiente:
- Usar las ntuplas para el punto 2.
- Buscar los hechos estilizados que resalten los procesos y analogías que den una conexión más "real".
lunes, 9 de enero de 2017
Breve cronología del trabajo realizado
El trabajo, en orden cronológico, ha sido aproximadamente así (sin fechas ya que no tengo forma de recuperarlas):
5 - Obtención de índices financieros diferentes, eso incluye buscar las fuentes adecuadas, comparación de las mismas, "limpieza" y rehacer cálculos.
6 - Implementación de volatilidad y desviación estándar (intentamos obtener el cálculo mediante las fórmulas del libro "The statistical mechanics of financial markets", de J. Voit). Esto fue una labor ardua debido a la poca información acerca del cálculo original. Al final, excepto por la normalización, era prácticamente lo mismo.
en la gráfica de arriba se generan números aleatoriamente de una distribución gaussiana y se calcula su desviación estándar de forma aproximada al libro mencionado, incorporando un eje temporal(archivo desv_est3.C). Se podía notar una estructura cuasi aleatoria, sin embargo no proporcionaba los resultados esperados. Se procedió a calcular las volatilidades. Esto dio como resultado:
Este macro dividió los datos en "trozos" de 30, y para cada uno de ellos obtuvo su media y RMS, repitiéndolo 170 veces.
Dada la discrepacia entre los métodos para calcular la autocorrelación, se probó a comparar el método ya existente con otro similar al del libro mencionado. Los resultados fueron (archivo doubletrouble.C):
La primera imagen (de arriba hacia abajo) corresponde al índice. La segunda, a las diferencias, la tercera a la autocorrelación según el método inicial, y la cuarta según el método "modificado" (es decir, similar al usado en el libro de Voit). Puede verse que no hay diferencia esencial y el método elaborado es más sencillo e intuitivo.
También puede verse que existe un problema de normalización, el cual quedó pendiente (lo hice en un archivo que por el momento no hallo, sin embargo ocurrió el problema inverso, aparentemente quedaron muy pequeñas).
7- Primer borrador de tesis. La estructura fue fijada por Raúl, y acorde con ella se hizo. Este primer borrador incluyó una introduccción a los temas tratados: sistemas complejos, econofísica, mercados financieros, etcétera).
8 - Segundo borrador de tesis. Con correcciones sugeridas por Raúl y Ricardo.
9 - Intento de visualización de leyes de potencia dentro de los retornos a diferentes tiempos. Esto se ha hecho de manera burda con los siguientes resultados:
Aquí se ha tomado un índice y se han calculado sus retornos a 14, 30, 60, 120 y 240 días. Posteriormente, se han obtenido sus máximos y se han graficado en un diagrama log-log:
La idea central es que con diversos "lags" aparecerá una ley de potencias, que es la marca de sistemas complejos, por lo cual a partir de ahí se podrían usar ciertas analogías ya existentes o estudiadas.
10- Distribución de longitudes de trends. Una vez obtenidas las distribuciones y la manera en cómo se comportan bajo diferentes intervalos, pasamos a analizar los segmentos o trends. Lo primero era graficar los datos y obtener dichos trends. Hecho esto se procedió a elaborar un histograma de la frecuencia de su longitud:
como era de esperar, los trends cortos predominan, esto significa que los cambios pequeños predominan, y cambios "sostenidos" son raros.
11- Procedemos a calcular retornos y velocidades de diferentes índices:
12- También se calculan las distribuciones de los retornos y velocidades:
es notable la existencia de dos "picos" en la distribución de velocidades, por lo cual procedemos a graficar la distribución por separado de las velocidades negativas y positivas:
- encabezados
- variables globales
- lectura de archivo(s)
- main
5 - Obtención de índices financieros diferentes, eso incluye buscar las fuentes adecuadas, comparación de las mismas, "limpieza" y rehacer cálculos.
6 - Implementación de volatilidad y desviación estándar (intentamos obtener el cálculo mediante las fórmulas del libro "The statistical mechanics of financial markets", de J. Voit). Esto fue una labor ardua debido a la poca información acerca del cálculo original. Al final, excepto por la normalización, era prácticamente lo mismo.
en la gráfica de arriba se generan números aleatoriamente de una distribución gaussiana y se calcula su desviación estándar de forma aproximada al libro mencionado, incorporando un eje temporal(archivo desv_est3.C). Se podía notar una estructura cuasi aleatoria, sin embargo no proporcionaba los resultados esperados. Se procedió a calcular las volatilidades. Esto dio como resultado:
Este macro dividió los datos en "trozos" de 30, y para cada uno de ellos obtuvo su media y RMS, repitiéndolo 170 veces.
Dada la discrepacia entre los métodos para calcular la autocorrelación, se probó a comparar el método ya existente con otro similar al del libro mencionado. Los resultados fueron (archivo doubletrouble.C):
La primera imagen (de arriba hacia abajo) corresponde al índice. La segunda, a las diferencias, la tercera a la autocorrelación según el método inicial, y la cuarta según el método "modificado" (es decir, similar al usado en el libro de Voit). Puede verse que no hay diferencia esencial y el método elaborado es más sencillo e intuitivo.
También puede verse que existe un problema de normalización, el cual quedó pendiente (lo hice en un archivo que por el momento no hallo, sin embargo ocurrió el problema inverso, aparentemente quedaron muy pequeñas).
7- Primer borrador de tesis. La estructura fue fijada por Raúl, y acorde con ella se hizo. Este primer borrador incluyó una introduccción a los temas tratados: sistemas complejos, econofísica, mercados financieros, etcétera).
8 - Segundo borrador de tesis. Con correcciones sugeridas por Raúl y Ricardo.
9 - Intento de visualización de leyes de potencia dentro de los retornos a diferentes tiempos. Esto se ha hecho de manera burda con los siguientes resultados:
10- Distribución de longitudes de trends. Una vez obtenidas las distribuciones y la manera en cómo se comportan bajo diferentes intervalos, pasamos a analizar los segmentos o trends. Lo primero era graficar los datos y obtener dichos trends. Hecho esto se procedió a elaborar un histograma de la frecuencia de su longitud:
como era de esperar, los trends cortos predominan, esto significa que los cambios pequeños predominan, y cambios "sostenidos" son raros.
11- Procedemos a calcular retornos y velocidades de diferentes índices:
12- También se calculan las distribuciones de los retornos y velocidades:
es notable la existencia de dos "picos" en la distribución de velocidades, por lo cual procedemos a graficar la distribución por separado de las velocidades negativas y positivas:
Suscribirse a:
Entradas (Atom)